US ERA ARCHIVE DOCUMENT

#### **EPA Disclaimer**

Notice: This document has been provided as part of the U.S. Environmental Protection Agency Sustainable Materials Management Web Academy (formally RCC) Recycling and Solid Waste Management Éducational Seriés. This document does not constitute EPA policy or guidance and should not be interpreted as providing regulatory interpretations. Inclusion within this document of trade names, company names, products, technologies and approaches does not constitute or imply endorsement or recommendation by EPA. Information contained within this document from non-EPA presenters has not been screened or verified. Therefore, EPA has not confirmed the accuracy or legal adequacy of any information provided by the non-EPA presenters and used by EPA on this web site. Finally, links to non-EPA websites are provided for the convenience of the user; reference to these sites does not imply any official EPA endorsement of the opinions, ideas, data or products presented at those locations nor does it guarantee the accuracy of the information provided.

#### OECD Global Forum on Environment Mechelen, Belgium, October 2010



# SUSTAINABLE MATERIALS MANAGEMENT

#### Joseph Fiksel

Executive Director, Center for Resilience The Ohio State University, USA

Sustainability Advisor, U.S. EPA
Office of Research & Development\*







<sup>\*</sup>The content of this presentation reflects the views of the author and does not represent the policies or position of the U.S. EPA.



# What is Sustainability?

Development that meets
the needs of the present
without compromising the
ability of future generations
to meet their own needs



Brundtland Commission, 1987



# What is Sustainability? A more explicit definition...

The continuation of human health and well being, environmental resource protection, and economic prosperity—now and for generations to come

Human Health & Well Being

Environmental Resource Protection

Economic Prosperity

#### **Exceeding Planetary Boundaries**





Source: Stockholm Resilience Centre, 2009

### Sustainable Development



"Meeting the needs of the present without compromising the ability of future generations to meet their own needs"

- World Commission on Environment & Development, 1987

#### Challenges

- Global warming, melting ice, rising oceans
- Ecosystem degradation, biodiversity loss
- Resource scarcity (water, land, minerals)
- Infectious diseases (viral, bacterial)
- Urbanization, social disintegration
- Income gaps (rich vs. poor)
- Population growth

## The Kaya Identity



#### Total carbon burden

= population (\$GDP/capita)



(resources/\$GDP)



(burden/resource unit)



Global challenge:
Decouple resource consumption
from economic growth

## Sustainable Materials Management



"SMM is an approach to promote sustainable materials use, integrating actions targeted at reducing negative environmental impacts and preserving natural capital throughout the life-cycle of materials, taking into account economic efficiency and social equity."



Working Group on Waste Prevention and Recycling

## Global Supply Chains



#### Interdependence of the United Kingdom

Line thickness denotes quantity of imports



Networks are both more fragile and more resilient than isolated systems

Source: New Economic Foundation

#### The Material-Energy-Water Nexus





Source: J. Fiksel, "Evaluating Supply Chain Sustainability," *Chemical Engineering Progress*, May 2010.

#### Systems View of Material Flows



#### Industry

(economic capital)

economic value is created for society

Society (human capital)



ecological goods and services are utilized in industry some waste is recovered and recycled labor is utilized in industry

waste and emissions mostly return to the environment ecological goods and services are utilized in society

**Environment** (natural capital)

#### SMM Policy Intervention Options



#### Principle 3 - Use the full suite of policy instruments



#### Potential EPA Interventions





## Preserving Natural Capital





#### Example: Snack Food Industry



## "Embedded" natural capital for a typical U.S. food supply chain, converted into energy equivalents

Source: OSU Center for Resilience



#### Life Cycle of Materials





### Example: Aluminum Industry



#### Life-Cycle of the Aluminum Can



## Industrial Ecology





## Ohio By-Product Synergy Network



Converting solid waste streams into economically valuable byproducts



## Eco-Flow™ Graphical Interface





Material flow analysis and optimization tool (partially funded by EPA STAR grant)

#### Ohio BPS Network Estimated Benefits R PROPERTY NEEDS NOT BENEFITS OF THE PROPERTY OF THE PROPE



| By | y-Product Syner | gy N | <u>Metrics</u> |
|----|-----------------|------|----------------|
|    |                 |      |                |

**Annual Savings** 

**Total Cost Savings** 

\$3,495,393

Waste to Landfill avoided (tons)

29,066

Direct Greenhouse Gas Emissions (MT)

1,182

Life Cycle Greenhouse Gas Emissions (MT)

230,137

Life cycle Water Use Reduction (1000 gal)

73,430

Total Life Cycle Energy Use (1000 GJ)

34,900

Non-renewable Resources (1000 tons)

503,416

#### Sustainable Business Practices





Release Reduction
Hazard Reduction
Benign Waste Disposition

Product Recovery

Disassembly

Recyclability



Energy & Material Conservation

**Source Reduction** 

**Servicization** 

Dematerialization Detoxification Value Recovery

Capital Protection and Renewal



Human Capital
Natural Capital
Economic Capital

Source: J. Fiksel, Design for Environment:
A Guide to Sustainable Product Development,
McGraw-Hill 2009



OECD Global Forum on Environment Mechelen, Belgium, October 2010

## MERCI DANK U THANK YOU

Resilience.OSU.edu